Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
12.
Clinics (Sao Paulo) ; 78: 100243, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37459671

RESUMO

AIMS: Although reduced life expectancy in Parkinson's Disease (PD) patients has been related to severe cardiac arrhythmias due to autonomic dysfunctions, its molecular mechanisms remain unclear. To investigate the role of cardiac ß1-Adrenergic (ß1AR) and A1-Adenosine (A1R) receptors in these dysfunctions, the pharmacological effects of stimulation of cardiac ß1AR (isoproterenol, ISO), in the absence and presence of cardiac ß1AR (atenolol, AT) or A1R (1,3-dipropyl-8-cyclopentyl xanthine, DPCPX) blockade, on the arrhythmias induced by Ischemia/Reperfusion (CIR) in an animal PD model were studied. METHODS: PD was produced by dopaminergic lesions (confirmed by immunohistochemistry analysis) caused by the injection of 6-hydroxydopamine (6-OHDA, 6 µg) in rat striatum. CIR was produced by a surgical interruption for 10 min followed by reestablishment of blood circulation in the descendent left coronary artery. On the incidence of CIR-Induced Ventricular Arrhythmias (VA), Atrioventricular Block (AVB), and Lethality (LET), evaluated by Electrocardiogram (ECG) analysis, the effects of intravenous treatment with ISO, AT and DPCPX (before CIR) were studied. RESULTS: VA, AVB and LET incidences were significantly higher in 6-OHDA (83%, 92%, 100%, respectively) than in control rats (58%, 67% and 67%, respectively). ISO treatment significantly reduced these incidences in 6-OHDA (33%, 33% and 42%, respectively) and control rats (25%, 25%, 33%, respectively), indicating that stimulation of cardiac ß1AR induced cardioprotection. This response was prevented by pretreatment with AT and DPCPX, confirming the involvement of cardiac ß1AR and A1R. CONCLUSION: Pharmacological modulation of cardiac ß1AR and A1R could be a potential therapeutic strategy to reduce severe arrhythmias and increase life expectancy in PD patients.


Assuntos
Adrenérgicos , Doença de Parkinson , Ratos , Animais , Adrenérgicos/uso terapêutico , Oxidopamina/uso terapêutico , Arritmias Cardíacas/etiologia , Receptores Purinérgicos P1/uso terapêutico
15.
Artigo em Inglês | MEDLINE | ID: mdl-37368949

RESUMO

INTRODUCTION: There has been growing concern about the long-term effects of COVID-19 on mental health. The biological factors common to psychiatric conditions and COVID-19 are not yet fully understood. METHODOLOGY: We narratively reviewed prospective longitudinal studies that measured metabolic or inflammatory markers and assessed psychiatric sequalae and cognitive impairment in individuals with COVID-19 at least 3 months after the infection. A literature search identified three relevant cohort studies. RESULTS: Overall, depressive symptomatology and cognitive deficits persisted for up to one year after COVID-19; depression and cognitive changes were predicted by acute inflammatory markers, and changes in these markers correlated with changes in depressive symptomatology; female sex, obesity, and the presence of inflammatory markers were associated with more severe clusters of physical and mental health status in patients' self-perceived recovery; and plasma metabolic profiles of patients continued to differ from those of healthy controls three months after hospital discharge, which were associated with widespread alterations in neuroimaging, reflecting issues with white matter integrity. This is a non-systematic review and cautions should be made while interpreting the conclusions. CONCLUSION: In individuals affected by the COVID-19, prolonged exposure to stress and alterations in metabolic and inflammatory markers plays a central role in psychiatric sequalae and cognitive deficits in the long term.

17.
Clinics (Sao Paulo) ; 78: 100195, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37099815

RESUMO

OBJECTIVE: The authors investigated changes in vascular reactivity in rats following pilocarpine-induced status epilepticus. METHOD: Male Wistar rats weighing between 250g and 300g were used. Status epilepticus was induced using 385 mg/kg i.p. pilocarpine. After 40 days the thoracic aorta was dissected and divided into 4 mm rings and the vascular smooth muscle reactivity to phenylephrine was evaluated. RESULTS: Epilepsy decreased the contractile responses of the aortic rings to phenylephrine (0.1 nM-300 mM). To investigate if this reduction was induced by increasing NO production with/or hydrogen peroxide L-NAME and Catalase were used. L-NAME (N-nitro-L arginine methyl ester) increased vascular reactivity but the contractile response to phenylephrine increased in the epileptic group. Catalase administration decreased the contractile responses only in the rings of rats with epilepsy. CONCLUSIONS: Our findings demonstrated for the first time that epilepsy is capable of causing a reduction of vascular reactivity in rat aortas. These results suggest that vascular reactivity reduction is associated with increased production of Nitric Oxide (NO) as an organic attempt to avoid hypertension produced by excessive sympathetic activation.


Assuntos
Estado Epiléptico , Vasoconstritores , Ratos , Masculino , Animais , Vasoconstritores/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Ratos Wistar , Catalase , Pilocarpina , Fenilefrina/farmacologia , Aorta Torácica/fisiologia , Óxido Nítrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...